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To mitigate safety hazards posed by near-ground vortex lateral transport, under 
instrument flight rules (IFR), parallel runway operations must adopt aircraft spacing 
standards that often reduce capacity.  Once the phenomenon of lateral transport is 
understood, it is conceivable that, under IFR, new separation standards could restore some 
runway capacity.  In this context, it is of interest to establish the probability that a wake 
vortex is still surviving in lateral transport t seconds after it began migrating.  This paper 
applies survival data analysis methods to demonstrate how to generate predictions of 
survival probability that are specific to aircraft type.  Modeling assumptions lead to a family 
of Weibull probability densities, a form that is useful for modeling wind phenomena.  

 
 

Nomenclature 
  
b  =  wingspan  
f(t)  =  vortex lifetime density function  
F(t) =  vortex lifetime cumulative distribution function  
h(t) =  vortex lifetime hazard function  
i  =  subscript denoting aircraft weight class 
j  =  subscript denoting aircraft type 
L  =  2/ bW , wing loading 

P(•) =  probability that •, a vortex demise event, occurs 
r  =  Cox-Snell residual vector  
S(t) =  vortex lifetime survival function  
t  =  time 
T  =  linking time 
V  =  random variable for vortex longevity 
W  =  maximum landing weight  
xj  =  vector of aircraft type j characteristics 
α  =  Weibull density scale parameter 
β  =  vector of regression coefficients for x 
γ  =  Weibull density shape parameter 
∆t  =  time step 
ε  =  random error term 
τ  =  regression coefficient for ε 
 

I. Introduction 
Vortex survival data by aircraft type was collected at Frankfurt/Main (FRA) International Airport between 

November 1997 and June 1998; a total of 10,000 vortex lifetime measurements were made by an anemometer array 
positioned at the eastern end of the parallel runways (Fig. 1).1  Since the purpose of this study is to produce aircraft-
specific Weibull probability densities, during data preparation care was taken to estimate aircraft attributes (e.g., 
wingspan or landing weight) based only on aircraft variants in service at the time of the Frankfurt experiment.2 
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Figure 1. The FRA test site.  The anemometer array (solid line) is located to the east. 

Large eddy simulation (LES) suggests average circulation decay is not a linear function, but rather follows a 
distinctive two-phase process.  Beyond a linking time T, average circulation decays more rapidly.3,4  Prior to T 
vortices retain much of their initial strength and this slow decay in vortex strength suggests vortex longevity 
probabilities also decline slowly for 0 < t < T.  Likewise, vortex demise soon after T (rapid loss of strength) also 
suggest survival probabilities fall at a much higher rate when t > T.  In summary, as vortices age, LES suggests the 
probability of demise per unit time is also non-linear (and increasing).4  This conjecture motivates a survival data 
analysis of V, a random variable for vortex longevity.     

For any survival process described by a probability density, a hazard function expresses the risk of demise per 
unit time.  This paper illustrates that modeling V with two-parameter Weibull densities – V~Weibull(α,γ) –  
accurately estimates vortex longevity distributions.  A data set comprising 10,000 vortex lifetime measurements at 
Frankfurt am Main International Airport offers evidence that hazard functions of near-ground vortices are nearly 
quadratic.  Such polynomial hazard functions are, by definition, associated with Weibull density functions.5   

A salient result of this survival data analysis is a set of aircraft-specific density functions for vortex longevity.  
Model fit and diagnostics produce a set of V~Weibull(α,γ) with scale parameters (α) that are linear combinations of 
aircraft characteristics, and shape parameters (γ) that are strictly time-dependent.  Section II describes details of 
hazard functions, the Weibull(α,γ) density, and the survival analysis of V.  Section III details Frankfurt data.  
Sections IV and V interpret and evaluate density functions predicting vortex survival time, by aircraft type, then 
suggests further research.  Finally, the Appendix reviews an earlier regression assessment and why it apparently 
underestimated Weibull shape parameters γ. 

 
II. Modeling Survival Probabilities 

A. The hazard function 
Important to survival data analysis, the probability of demise per unit time is given by the hazard function h(t).  

The conditional failure rate is another definition of h(t); assuming survival to time t, what is the probability of 
instantaneous* demise?  

To define h(t) for a random variable V, denote the probability density by f(t) = P(V = t) and the cumulative 
distribution function by F(t) = P(V ≤ t). The hazard function for V is the ratio of the probability density f(t) to the 
survival function S(t) = P(V > t) = 1 – F(t): 

))(ln()(/)()( tS
dt
dtStfth −== .             (1) 

The second equality – a consequence of the Chain Rule of calculus† – motivates many methods for exploratory 
survival data analysis and modeling diagnostics.  Note that knowledge of any one of f(t), S(t) or h(t) uniquely 
determines the other two probability functions. 

Equation (1) does not restrict the shape of h(t); depending on the survival process, h(t) may be constant, or it 
may resemble a ‘bathtub’ curve.  LES studies suggest vortex circulation decay is a nonlinear process.  Prior to a 
linking time T vortex strength decays slowly.  In other words for 0 < t < T vortices generally preserve their strength 
as they age, which suggests that vortices are more likely to extend their life beyond t.  As time passes S(t) decays – 
S(t) = P(V > t) gets less probable for larger t – and beyond T decay occurs more rapidly.  The probability of 
instantaneous demise always increases because the vortex is aging, yet demise probabilities increase at a slower rate 
between time 0 < t < T. 
                                                           
* Defined as demise within the infinitesimally small interval ( )ttt ∆+, . 

† For a differentiable function g(x), ⎥⎦
⎤

⎢⎣
⎡⋅= )(

)(
1))(ln( xg

dx
d

xg
xg

dx
d . 

25R

25L

430 m

195 m

60 m

45 m

518 m

907 m

874 m
25R

25L

430 m

195 m

60 m

45 m

518 m

907 m

874 m



3 
American Institute of Aeronautics and Astronautics 

Once T is reached, LES suggests vortices do not survive much longer.4  If vortex longevity does reach t > T, the 
probability of instantaneous demise increases at a faster rate than it did prior to T.  In summary, LES results are 
evidence that an appropriate density function for vortex lifetime V would have an associated nonlinear hazard 
function h(t).  Many density functions possess this property,‡ and the assumption V~Weibull(α,γ) yields accurate 
predictions and desirable diagnostics. 

B. The Weibull distribution 
The Weibull density formula involves a scale parameter α and a shape parameter γ : 
 

0,,0),exp()( 1 >≥−= − γαααγ γγ ttttf .            (2) 
 
The survival function is S(t) = exp(-αtγ) and, from Eq. (1), the hazard function is  

0,)())(ln()( 1 >=−−=−= − ttt
dt
dtS

dt
dth γγ αγα .         (3) 

Note that f(t) is an Exponential(α) distribution if shape parameter γ = 1, with a constant hazard function h(t) = α.  
Because h(t) is non-constant for γ > 1, Weibull densities generalize the Exponential(α) density.  If shape parameter γ 
= 2 then h(t) = αγ t is a linear function of longevity.  If γ > 2 then h(t) = αγ tγ-1 is polynomial (monotonically 
increasing because t ≥ 0).  The circulation decay process illustrated by LES data suggests a nonlinear hazard 
function, so that assuming V~ Weibull(α,γ) suggests shape parameters γ > 2 (Fig. 2).  A monotonically increasing 
hazard function is a natural consequence of the aging process (as vortices age, instantaneous demise is always more 
probable). 

 
 
 
 
 
 
 
 
 
 
 
Figure 2. Simplified plots: LES results (left)  suggests hazard rates are polynomial, not linear (right). 
  
Vortices most likely to migrate near the other parallel runway were singled out for measurement at Frankfurt 

airport.  Only vortices reaching the second anemometer were measured (by requiring an ambient crosswind of at 
least 1 m/s) and vortex-induced crosswinds had to be at least 4 m/s stronger than the ambient crosswind to ensure 
detection.  The experiment equated demise with a vortex signal no greater than the ambient wind.  This favors 
longer-lived vortices and skews the probability density.1  The experimental design might skew probabilities in favor 
of longer lifetimes (so that a symmetric density may not be a valid assumption).  The Weibull shape parameter γ 
quantifies skewness, and estimating it would be beneficial. 

C. Weibull regression 
The method applied by this study assumes a linear relationship between aircraft attributes and the logarithm of 

vortex survival times (survival analyses refer to this as the accelerated failure time model).  For aircraft type j, 
Vj~Weibull(αj,γ) denotes a random variable of vortex survival and xj denotes attributes of that aircraft.   The linear 
regression model  

jjj εV ⋅+⋅+= τβ xβ0ln              (4) 
assumes the independent and identically-distributed random error terms εj follow the ‘extreme value’ (or Gumbel) 
distribution,§ not a normal distribution (an assumption of linear least squares regression).5  This assumption about 
                                                           
‡ Hazard functions h(t) that depend on T are never assumed.   
§ For the extreme value distribution (evd), the density is ))exp(exp()( εεε −=f  and the survival function is 

))exp(exp()( εε −=S .  It turns out that, regardless of the density function assumed, the probability of observing an 
extreme value (i.e., the minimum or maximum value) among n observations follows an evd, which converges to the 
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the εj implies (see footnote) that Vj~Weibull(αj,γ) with shape parameter τγ /1≡  and scale parameter 

( )⎥⎦
⎤

⎢⎣
⎡ ⋅+−= jj xβ0

1exp β
τ

α .  Hence this ‘Weibull regression’ method estimates a set of Weibull distributions 

),( jj tf x  possessing a common γ yet distinct scale parameters αj (determined by aircraft j attributes) to predict 
vortex survival time.   

Consequently, the survival function )exp(),(1),( γα ttFtS jjjjj −=−= xx  and the hazard function  

              1),( −= γγα tth jjj x                (5) 
 

describes near-ground vortex demise for aircraft type j.  Equation (4) coefficients are estimated through maximum 
likelihood, and the associated confidence intervals involve standard normal z-scores**.5  In other words, inference 
for Weibull regression models is no more complicated than inference for linear least-squares methods. 

D. The proportional hazards assumption 
 The right side of Eq. (5) is the product of two functions: the Weibull shape parameter jjg α=)(x which captures 

aircraft type-specific effects on vortex survival, and 1
0 )( −= γγtth .  (And, h0(t) is the hazard function of a 

Weibull(1,γ) random variable.)  Weibull regression is a special case of ‘proportional hazards’ modeling5 because 
ratios of hazard functions are independent of time; they are strictly functions of characteristics for aircraft types j 
and k: 
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E. Stratified models 
Weibull regression imposes an assumption that, between any two aircraft types, the relative risk of instantaneous 

vortex demise is always proportional (Eq. (6)).  This assumption might not seem reasonable if a Weibull regression 
analysis is applied to disparate subjects; it might be inappropriate to assume the hazard functions describing B-737 
and B-747 vortex demise are proportional.  In such cases, the analyst defines categories of similar individuals (called 
‘strata’) – so that Eq. (6) is reasonable within, not between, the strata – and fits a Weibull regression model to each.5   

This enlarges the set of Weibull random variables needed to describe vortex demise over the entire observation 
set.  Near-ground vortex survival probabilities for aircraft type j belonging to strata i is assumed Vij~Weibull(αij,γ i).  
Note the shape parameters ii τγ /1=  vary only between the strata.  Aircraft-specific effects on vortex longevity are 
captured by the scale parameters ( )[ ]jiiiij xβ ⋅+−= 0exp βγα .  In stratified form, the Weibull regression technique 
described in section C assumes the vortex decay process is described by a larger, categorized set of polynomial 
hazard functions 

( )1
0 )()(),( −=×= itthgth iijijijji

γγαxx .          (7) 
Weibull regression was performed with the LIFEREG procedure included in SAS software. 

 
III. Frankfurt Survival Data 

A. Aircraft and their traits 
Weibull regression data comprises a set of 10,000 vortex lifetime measurements observed at Frankfurt am Main 

International Airport.  This is the same data set7 the Volpe Center examined with a nonparametric regression 
method.††  To remain consistent with the Frankfurt data set and related studies, V1 denotes the downwind vortex 
(the first vortex detected by the anemometer array); the upwind vortex (with respect to the crosswind) is denoted V2.  
Results for both categories are discussed, yet this paper focuses on V1 since it is more relevant to aircraft separation 
                                                                                                                                                                                           
Weibull form as n→∞.  Moreover, vortex survival described by Vj~Weibull(αj,γ) implies ln Vj~evd(ln αj,1/γ), which 
is the logic behind f(ε) from Eq. (1).5  
**Estimating a two-sided 100(1-δ)% confidence interval involves computing a z-score Zδ/2.  Assuming 
Z~Normal(0.1), the appropriate  z-score is the value for which P (Z > Zδ/2) = δ/2. 
†† As the name suggests, nonparametric methods make no density assumptions.  Those empirical results motivated 
us to consider certain densities, including the Weibull. 
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standards at parallel runways.  Two characteristics of each aircraft type j were considered: wingspan bj, and 
maximum landing weight Wj.  Maximum landing weight was chosen as a proxy variable for the actual weight of the 
arriving aircraft.  Two more variables were considered to test if wingspan and weight in combination influence 
vortex longevity (i.e., to test whether Vj is a nonlinear function of bj and Wj).  A statistically significant wing loading 
term, 2/ jjj bWL = , is evidence of an inverse and nonlinear relationship between the effects of wingspan and weight 

on vortex survival.  A statistically significant product term jj Wb × , albeit contrived, provides evidence that (the 
effects of) wingspan and weight are somehow correlated. 

This analysis was performed several years after Frankfurt measurements were collected (1997-1998).  Care was 
taken to include only aircraft types in fleet service2 at that time to compute average values of bj and Wj.  For 
example, average bj and Wj for the B-737 type excludes the –700 series; it was not in service by 1998.  Table 1 lists 
the aircraft types considered with their respective wingspan bj, maximum landing weight Wj and wing loading Lj.  
(Values of the contrived term jj Wb ×  are omitted.)  Table 1 column ‘Cases’ tabulates the 10,000 sets of lifetime 
measurements (for V1 and V2) the anemometer array detected along either Frankfurt runway 25L or 25R. 

 
Table 1 Aircraft types and dimensions 

  Largea   
Typeb (j) bj, meters Wj, 104 kg Lj, 104 kg/m2 Cases 

A-319 34.1 30.379 261.257 472 
A-320 34.1 32.077 275.855 1552 
A-321 34.1 36.982 318.039 984 
B-737 28.9 29.889 357.858 2012 
B-757 38.0 46.296 320.611 228 

MD-80c 32.9 29.387 272.201 411 
BAe-146 26.3 17.857 258.166 152 

  Heavyd   
Type bj, meters Wj, 104 kg Lj, 104 kg/m2 Cases 

A-300 44.8 66.579 331.725 703 
A-310 43.9 60.273 312.749 570 
A-330 60.3 89.665 246.597 41 
A-340 60.3 91.615 251.961 254 
B-747 62.1 143.794 373.472 1514 
B-767 49.7 67.460 273.109 599 
B-777 62.9 109.844 278.076 107 
DC-10 50.4 92.538 364.537 158 
L-1011 47.3 81.129 362.621 40 
MD-11 51.8 67.460 251.851 203 

a. 18,600 – 115,700 kg maximum certificated gross takeoff weight (MCGTOW) 
b. Aircraft Identification Code (AIC) Model. 
c. Includes DC-9 type 
d. > 115,700 kg MCGTOW 
 
Table 1 also labels the two strata defined for the Weibull regression modeling.  The strata mimics two categories 

of maximum certificated gross takeoff weight (MCGTOW).  The U.S. categorizes aircraft with MCGTOW in excess 
of 255,000 pounds as ‘Heavy’ (henceforth subscripted as i = 1) and aircraft with MCGTOW between 41,000 – 
255,000 pounds (18,600 – 115,700 kg) as ‘Large’ (henceforth subscripted as i = 2).8  This study made one exception 
by including the B-757 in the Large category as opposed to its own category.  Weibull regression is utilized to 
compare the effects different aircraft attributes have on vortex survival time.  Weibull parameters α and γ for the B-
757 should be estimated through one-sample hypothesis tests, not Weibull regression, if that aircraft is analyzed in 
isolation.  

B. Survival data assumptions 
For simplicity, a continuous time scale is assumed, even though vortex lifetimes at Frankfurt were measured in 

two-second intervals.  Another important assumption is: vortex demise occurs precisely when reported.  All 
measurements are assumed to be uncensored (in the parlance of survival data analysis).  A censored subject 
corresponds to an unknown lifetime.  In this context, censored measurements would occur whenever vortex 
longevity is known to exceed the tracking capabilities of the Frankfurt anemometer arrayr.  Censoring occurs in 
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several forms5, and any approach complicates analysis.  An earlier report8 claimed it was impossible to tell which 
vortex lifetimes were censored so it seems reasonable to assume every recorded lifetime is exact. 

 
IV. Results 

A. Densities predicted by the regression method 
Results from a stratified Weibull regression analysis applied to V1 (downwind) vortex longevity along runway 

25L are presented first.  SAS software suppresses variables which are statistically insignificant (for this study, the 
criterion was a  p-value < 0.05), and so Table 2 relates the most parsimonious Weibull regression models.  Per the 
equations expressed in section II.C, the variable coefficients dictate aircraft type-specific Weibull scale and shape 
parameters.   The upper portion of Table 2 lists Eq. (4) estimated coefficients, their standard errors and confidence 
intervals derived from vortex demise data among aircraft in the ‘Heavy’ MCGTOW class.  The lower portion lists 
those values derived from vortex demise data among ‘Large’ MCGTOW class aircraft. 

 
Table 2 Weibull parameters – V1 longevity along runway 25L. 

Heavy MCGTOW class 

Parameter Value Standard 
Error 

Test 
Statistic p-value 95% Confidence 

Interval 
     Lower Upper 

β0 4.356 0.037 13804.3 <0.0001 4.283 4.429 
βb 0.007 0.001 99.15 <0.0001 0.002 0.009 
γ 3.642 0.053   3.540 3.747 

Large MCGTOW class 
β0 3.822 0.065 3455.01 <0.0001 3.695 3.950 
βb 0.014 0.003 24.06 <0.0001 0.009 0.020 
βW 0.004 0.002 4.57 0.0324 0.0003 0.008 
γ 2.833 0.034   2.767 2.901 

 
For aircraft j of the MCGTOW ‘Heavy’ class (i = 1), wingspan is statistically significant and not maximum 

landing weight nor the nonlinear terms.  Weibull scale parameters estimated for aircraft j are 
( )[ ] )025.0865.15exp(007.0356.4642.3exp1 jjj bb ⋅−−=⋅+×−=α .   

It follows from Eq. (7) that the set of hazard functions is 
( ) ( ) ( )jjjj bttth ⋅−−×⋅=×⋅= 025.0865.15exp642.3642.3),( 642.2

1
642.2

1 αx .      (8) 
By contrast, for aircraft j of the MCGTOW ‘Large’ class  (i = 2), both wingspan and maximum landing weight 

are statistically significant.  (Landing weight distinguishes between the three Airbus variants with identical 
wingspan.)  Estimated Weibull scale parameters for aircraft in this category are 

( )[ ] ( )jjjjj WbWb ⋅−⋅−−=⋅+⋅+×−= 011.004.0828.10exp004.0014.0822.3833.2exp2α .   
The set of polynomial hazard functions from Eq. (7) is 
 

( ) ( ) ( )jjjjj Wbttth ⋅−⋅−−×⋅=×⋅= 011.004.0828.10exp833.2833.2),( 833.1
2

833.1
2 αx .    (9) 

 
Note that every aircraft type-specific Weibull scale parameter is a linear combination of wingspan and weight; 

nonlinear interaction terms Lj or jj Wb ×  are never statistically significant.‡‡  As time passes, scale parameters αij 
remain constant, so the hazard functions of Eqs. (8) and (9) resemble polynomials.   

B. Plotting and interpreting curves 
Figure 3a plots four functions associated with Heavy aircraft, and Fig. 3b does the same for four Large aircraft.   

Recall, LES suggests vortex strength declines even more rapidly beyond the linking time.  Although the hazard 
functions of Fig. 3 are never expressed relative to any linking time, the curves for each aircraft type clearly suggest a 
similar decay process; the risk of instantaneous vortex demise increases in a nonlinear fashion as time passes.  The 
                                                           
‡‡ Linear functions of wingspan and weight are evidence that variables bj and Wj are independent in the strongest 
sense.  A nonlinear term would indicate ‘conditional independence’ in which the pair of variables can only be 
assumed independent if survival analysis ‘conditioned’ on one of them (i.e., held it fixed).    
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behavior of hazard functions as probability analogs to LES curves describing vortex strength was illustrated in Fig. 
2. 
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Figure 3. Polynomial hazard functions for Heavy (Fig. 3a) and Large aircraft (Fig. 3b). 

 
Because near-ground vortices from Heavy aircraft generally survive longer than vortices from Large aircraft, the 

upward trend in hazard rates for Heavy aircraft (Fig. 3a), at t = 40 seconds, occurs later than the analogous trend in 
hazard rates for Large aircraft vortices (Fig. 3b) .  Note that, between 0 < t < 40 seconds, there is virtually zero 
chance of instant demise (given the vortex survives until t).  For Heavy aircraft, Weibull scale parameters 

jbj ⋅−−= 025.0865.151α  get smaller as wingspan increases, and densities all share Weibull shape parameter γ1 = 

3.642.  The B-747 hazard function (Fig. 3a, rightmost curve) possesses the slowest rate of increase due to the 
aircraft’s large wingspan.  This is to say that, over time, B-747 V1 vortices always possess the smallest risk of 
instant demise (i.e., the greatest survival probabilities) among Heavy aircraft considered by this assessment. 

By contrast, the B-737 hazard function (Fig. 3b, leftmost curve) is steepest; B-737 near-ground V1 – relative to 
the other three aircraft – always have the highest risk of instant demise.  All densities describing Large aircraft V1 
lifetimes share Weibull shape parameter γ2 = 2.833.  Lighter weight and smaller wingspan each reduce Weibull scale 
parameters jjj Wb ⋅−⋅−−= 011.004.0865.152α , and the B-737 possesses the smallest of each (Table 1).  From 
Eq. (6) curves within, but not between, Figs. 3a and 3b are assumed proportional to each other.  Both charts indicate 
hazard probabilities (the y-axis) range between 0.12-0.22 (12-22%) among near-ground V1surviving at least t = 200 
seconds (the x-axis).  It is very unlikely that near-ground V1 (traveling from runway 25L) would survive until t = 
200 seconds, regardless of aircraft type, and so hazard functions eventually overlap (i.e., it becomes difficult to 
discriminate vortex demise rates by aircraft type, for large t). 

Ratios of hazard functions estimate the relative risk of instant vortex demise between any two aircraft in the 
same weight class, expressed as a probability.  A comparison of two Heavy aircraft, the A-310 and the B-747, 
illustrates model inference.  Table 2 (upper half) estimates the Weibull shape parameter γ1 = 1/τ1 = 3.642 as well as 
the wingspan coefficient  βb= 0.007.  (Dimensions for both aircraft are presented in Table 1.)  The hazard ratio Eq. 
(8) is 576.1))1.629.43(025.0exp( =−⋅− .  Throughout the V1 aging process, those from the A-310 are predicted to 
have a 58% higher probability of instantaneous demise than B-747 vortices V1, attributable to the difference in 
wingspan for those aircraft.  In Fig. 2a the A-310 hazard (leftmost) curve is always 1.576 times higher than the B-
747 (rightmost) hazard curve.    

To compare the A-320 with the B-737, Table 2 (lower half) estimates the Weibull shape parameter γ2 = 1/τ2 = 
2.833, the coefficient for wingspan βb = 0.014, and coefficient for weight βW = 0.004.  (Again, dimensions are 
presented in Table 1.)  The hazard ratio is 261.1))077.32889.29(011.0)1.349.28(04.0exp( =−⋅−−⋅− .  Throughout 
the V1 aging process, A-320 vortices are predicted to have a 26% higher probability of instant demise than B-737 
vortices.  This prediction is attributable to differences in both wingspan and maximum landing weight.  In Fig. 3b 
the B-737 (leftmost) curve is always 1.261 times higher than the adjacent A-320 curve. 
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To evaluate prediction accuracy it is easier to examine Weibull survival functions S(t) rather than hazard 
functions h(t).  The stratified Weibull method yields a set of survival functions, each defined by a pair of estimated 
shape and scale parameters:  

( )ittS ijjji
γα−= exp),( x .             (10) 

For near-ground vortices V1 from runway 25L, Fig. 4 plots Eq. (10) survival functions (dark curves) for the B-
737, A-320, A-310, and B-747.   
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Figure 4. Predicted survival functions of four aircraft. 

 
Figure 4 also plots the four survival functions empirically estimated from Frankfurt data (marked curves).  

Marked curves plot the percentage of vortices, downwind of runway 25L, surviving longer than t = 0, 10, 20,…, 200 
seconds since the aircraft passed over the anemometer array.  Predictions for B-737 and B-747 vortex lifetime 
probabilities agree particularly well with Frankfurt measurements.  The Weibull density underestimates A-320 
vortex survival probabilities S(t) for 50 ≤ t ≤ 70 seconds, but is otherwise quite accurate.  The density consistently 
overestimates A-310 vortex survival probabilities. 

Confidence intervals around each survival function are easily derived.  The last two columns of Table 2 present 
the values needed to draw the two survival curves representing the lower and upper bound, respectively, at the 95% 
level.  To reduce clutter Fig. 5 presents estimated survival functions (solid curves), their respective confidence 
intervals (dashed bands), and observed proportions (markers) for only the B-737 and B-747.  (Confidence intervals 
are drawn between the 5th and 95th percentiles for vortex lifetime.  That is, t spans the range values beginning with 
S(t) = 0.05 up through S(t) = 0.95.) 
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Figure 5. Tight 95% confidence intervals surround predicted survival probabilities. 
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Regression goodness-of-fit is sufficiently strong so that, in general, confidence intervals have the desirable 
property that the bounds remain tight throughout the vortex aging process.  Plotting densities (Fig. 6) is simply a 
matter of drawing Eq. (2) for each pair of aircraft type-specific Weibull shape and scale parameters. 
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Figure 6. Probability densities of downwind vortex survival – four aircraft approaching runway 25L. 

 
Densities for V1 survival probabilities are asymmetric; densities for the two Large aircraft have elongated right-

hand tails, and elongated left-hand tails for the pair of Heavy aircraft.  Note that the highest points of each density 
(the modes), corresponding to the most probable vortex lifetime for the respective aircraft, shift successively 
towards the right (longer lifetimes) with increases in either wingspan or maximum landing weight (see Table 1).   

C. Residuals analysis 
Typically, a complete regression analysis assesses residuals (the Eq. (4) random error terms).  Weibull regression 

assumes residuals that are not normally distributed (see footnote, p. 4).  The Cox-Snell method confirms how closely 
residuals follow the assumed random process and, by extension, whether Weibull densities are reasonable for 
estimating vortex lifetimes.5  Stratified Weibull regression generates a set of  vectors rji each associated with each 
aircraft type j of MCGTOW classes i = 1,2.  According to the Cox-Snell method, a specific rji scatterplot will follow 
a 45-degree line through the origin if Weibull regression assumptions are met.§§  Two scatterplots depicting Heavy 
(Fig. 7a) and Large (Fig. 7b) residuals pass through the origin and fall along the line y = x. 
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Figure 7. Weibull density functions are adequate for modeling vortex demise (downwind of runway 25L). 
 
Predicting runway 25L V1 longevity probabilities with a set of aircraft type-specific Weibull density functions 

appears quite appropriate.  The modest departure of Fig. 7b residuals corresponds to very improbable V1 lifetimes 
among Large aircraft (recall, the B-757 is analyzed as a Large aircraft).  Unfortunately, a weakness of Cox-Snell 
analysis is that scatterplots cannot be used to detect bias in the Weibull densities.5  That is from Fig. 7b, when 
                                                           
§§ The key property behind Cox-Snell analysis is rji~Exponential(1) when assumptions hold, which implies  
 S(rji) = exp(-rji).  The scatterplot simply graphs points [rji, -ln S(rji)] = (rji, rji) for adequate models. 
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residuals fall below the reference line, it is impossible to infer whether Eqs. (2) consistently under-estimate (or over-
estimate) Large aircraftV1 longevity probabilities late in the decay process. 

 
V. Exploring a Constant Weibull Shape Parameter 

A set of Weibull densities possessing aircraft type-specific scale parameters predict vortex V1 survival 
probabilities quite well (see Eqs. (8) and (9)).  These densities possess one of two shape parameters since longevity 
measurements are divided into two classes based upon aircraft MCGTOW.  The best-fit shape parameters γ1= 3.642 
> 3.0 (for the Heavy class) and γ2 = 2.833 < 3.0 (for the Large class), so the analysis examined if a fixed γ ≡ 3.0 
would yield comparable predictions.  Repeating the analysis with γ ≡ 3.0 (Table 3) has virtually no effect on the 
coefficients or statistical significance of wingspan and weight. 

 
Table 3 Weibull regression fit when parameter γ = 3.0. 

Heavy MCGTOW class 

Parameter Value Standard 
Error 

Test 
Statistic p-value 95% Confidence 

Interval 
     Lower Upper 
β0 4.321 0.045 9274.35 < 0.0001 4.233 4.408 
βb 0.007 0.001 72.17 < 0.0001 0.001 0.009 
γ 3.0      

Large MCGTOW class 
β0 3.838 0.061 3911.67 < 0.0001 3.717 3.958 
βb 0.014 0.003 26.50 < 0.0001 0.009 0.019 
βW 0.004 0.002 4.91 0.027 0.0005 0.008 
γ 3.0      

 
Recall ( )1),( −= γγα tth ijjji x  so that γ = 3.0 assumes vortex demise is a random process described by quadratic 

hazard functions, regardless of aircraft wingspan and weight (and MCGTOW class).  This family of Weibull 
densities predicts virtually identical survival probabilities as the set estimated by Table 2 parameters.  Yet, there is a 
tradeoff between accuracy and simplicity, particularly among Heavy class aircraft.  Figure 8a illustrates that the B-
747 probability density with parameter γ1 = 3.642 (Table 2, top) appears to agree more closely with the empirical 
survival function than a density with parameter γ = 3.0.  For the A-310 the density with parameter γ = 3.0 appears 
more accurate, while a density with γ1 = 3.642 consistently overestimates probabilities (Fig. 8b).   Both models 
sandwich the data set for shorter lifetimes (the γ = 3.0 density is more accurate and less biased), then cross at 
roughly t = 120 seconds, and afterward the γ1 = 3.642 density is more accurate (now, the γ = 3.0 model is biased).  

Two Weibull models: B-747 
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Two Weibull models: A-310
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Figure 8. Two examples – fixing γ = 3.0 involves a tradeoff between simplicity and accuracy. 
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To assume V1 demise as a random process described by quadratic hazard functions (γ = 3.0) might be reasonable 
for any aircraft type, but more analyses (ideally on data from several airports) are recommended.  The preceding 
analysis only considered V1 vortices traveling from Frankfurt runway 25L toward runway 25R.  (These instances 
comprise the majority of cases in the Frankfurt data set.)   

 
VI. Concluding remarks 

Regression analyses assume best-fit equation residuals (differences between predicted and actual values) follow 
a specific random process.  So, the density form describing residuals will dictate the density form describing V1 
survival probabilities.  (The Appendix describes some of the authors’ lessons learned between this and earlier 
modeling attempts.)  Aircraft wingspan in particular appears useful in equations that estimate scale parameters for a 
family of Weibull distributions; diagnostics also suggest the random process controlling residuals is consistent with 
the assumed Weibull density form.  (Weight is also useful to distinguish the ‘Large’ aircraft with identical 
wingspan.)  For modeling vortex demise as a random process, the most important insight from the regression 
equations and diagnostic tests based upon Frankfurt V1 decay is that the proportional hazards assumption is 
confirmed.  Between any two aircraft of the same weight class, the rates at which their respective V1 vortices die 
out remain in constant proportion over time.  Among ‘Heavy’ aircraft, that proportion is determined by the ratio of 
the two wingspans. 

 
Appendix 

In an earlier paper3, several graphs were presented as evidence for )exp()( 2ttS β−∝ suggesting near-ground 
vortex longevity*** could be modeled as V~Weibull(β,2) random variables, corresponding to a linear hazard 
functions: h(t) = βt(2-1) = βt (see section II, part B).  Applied to current Frankfurt data, Fig. 9 reproduces the simple 
linear regression equation predicting demise rates for V1 vortices traveling away from runway 25L. 
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Figure 9. Linear least-squares regression assumed a linear hazard function (γ = 2) for V1 decay. 

 
That linear least-squares analyis3 fitted lines predicting survival S(t) as a function of one independent variable, t 

(which was also reported in ten second intervals): 
[ ] εββ ++= 2

10)(ln ttS               (A-1) 

The fit of the example equation [ ] 2000165.0)(ln ttS −=  is excellent ( 975.02 =r ), but the regression assumption 
ε~Normal(0,1) is implausible.  One piece of evidence is the normal probability plot for Fig. 9 residuals, which are 
not randomly scattered near the reference line (Fig. 10). 
                                                           
*** At that time, predictions were not aircraft-specific, so b is a universal parameter.  Further, the only data set 
available was half its present size, comprising 5,000 measurements. 
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Figure 10. The random error terms appear non-Normal, contradicting a least squares assumption. 

 
The residuals not only deviate from the line, but note that, along the x-axis of Fig. 10, virtually all of them are 

positive.  The best fit line from Fig. 9 would consistently overestimate V1 survival probabilities; in other words, Eq. 
(A-1) predictions were biased.  Of the original 5,000 measurements, only 2,800 corresponded to V1 traveling from 
runway 25L.  For Weibull regression analysis, 6,900 V1 measurements are available (out of 10,000 total).  For 
illustration purposes only (since Weibull regression is preferred) the following describes the dramatic effects a) the 
larger set and b) aggregating survival data in ten-second intervals have on the validity of Eq. (A-1). 

A least-squares line corresponding to )exp()( 3ttS β−∝ has superior fit ( 995.02 =r ) compared with Fig. 9.  
However, once again ε~Normal(0,1) imputes the wrong random process on V1 decay.  Figure 11 includes three 
graphs; the best-fit line assuming γ = 3 (top); the normal probability plot (center); a plot of predicted S(t) versus the 
residuals (bottom).  Residuals in the normal probability plot do not deviate as severely from the reference line, and 
they are relatively symmetric around x = 0.  Yet, ε~Normal(0,1) is still implausible as the residuals are not randomly 
scattered about the solid reference line (bottom plot).  If linear least-squares was appropriate and ε~Normal(0,1) then 
the bottom scatterplot would resemble a random, symmetric ‘cloud’ of points.  Linear least-squares is not an ideal 
technique for predicting S(t), yet it does offer evidence for choosing γ = 3 over γ = 2.  
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Figure 11.  )exp()( 3ttS β−∝ improves fit, but ε~Normal(0,1) is the wrong random process on V1 decay. 
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Fitting linear least-squares equations to values of t and S(t) computed every ten seconds, not every two seconds 

in the manner consistent with Frankfurt experiments, was another source of prediction error. 3  A probability plot 
used in survival analysis illustrates how aggregating data affected γ estimates and, in particular, demonstrates 
V~Weibull(α,3) would have been a better assumption.†††  

The cumulative hazard function ∫=
t

dxxhtH
0

)()(  mimics the relationship between a probability density f(t) and 

the cumulative distribution F(t).  The Eq. (3) hazard function h(t) implies γβttH =)(  if V~Weibull(β,γ).  Taking 
logarithms of both sides then isolating t implies a linear relationship: 

)(ln11ln1ln tHt
γβγ

+=              (A-2) 

Both Weibull parameters can be estimated directly from Frankfurt data by fitting Eq. (A-2) and the (reciprocal of 
the) slope of that line estimates the shape parameter γ.    The function H(t) is estimated numerically following a 
multi-step algorithm.4   

The best-fit line to data of the original assessment (2,800 V1 measurements at runway 25L, aggregated in ten 
second intervals) is )(ln5369.01535.4ln tHt ⋅+= .  So, estimated γ is  

86.1
5369.0
1

==γ . 

This is certainly consistent with V~Weibull(β, 2).  Yet, if Eq. (A-2) is fitted with t and H(t) measured every two 
seconds, the line changes to )(ln4016.03786.4ln tHt ⋅+= .  Now,  

49.2
4016.0
1

==γ . 

Thus, if V1 runway 25L survival data is evaluated consistently with the Frankfurt experiment, the validity of 
V~Weibull(α,2) is less clear. 

 Finally, Weibull regression data set (6,900 V1 measurements, in two second intervals, at runway 25L) yields 
the straight line )(ln3445.05420.4ln tHt ⋅+= , and this time 

90.2
3445.0
1

==γ . 

Once again, there is stronger evidence that V~Weibull(β, 3); demise rates of V1 vortices (from runway 25L) – in 
this context aircraft type is immaterial –  follow a random process described by a quadratic hazard function.  Figure 
12 summarizes the progressive effects on shape parameter γ.  It plots three sets of points [ln(t),ln H(t)] and the three 
fitted lines: a) on the right, the line estimating γ = 1.86, b) in the center, the line estimating γ = 2.49 and c) on the 
left, the line estimating γ = 2.9.   
                                                           
††† In the context of this discussion, there is one survival data set describing V1 longevity from runway 25L, which 
requires only one pair of Weibull parameters.  The Weibull regression analysis estimated an entire set of densities, 
such that a) shape parameters γ are MCGTOW class-specific and b) scale parameters α are aircraft type-specific.   
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Figure 12. More survival data, evaluated in two second intervals, suggests γ = 3, and not γ = 2. 
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